UNIVERSIDAD AUTONOMA DE BAJA CALIFORNIA

CARTA DESCRIPTIVA

Carrera: Licenciado en Biología

I. DATOS DE IDENTIFIC	CACION.			
Nombre de la Asignatura:	Taller de Fisicoquímica	Clave		
No. de Horas Teóricas	Prácticas	Teórico-Prácticas	No. Créditos	
Ciclo Escolar Área o semestre al que pertenece				
Requisitos para cursar la a	ısignatura			
II. Propósito General del C	Curso:			
•	• • •		es principalmente biológicos y ecológico emas concretos seleccionados.	S

III. Objetivo General del Curso:

Formativo: Que el alumno sea capaz de identificar, analizar y cuantificar las magnitudes y variables fisicoquímicas involucradas en un proceso natural o transformación biológica.

Informativo: Que el alumno conozca y maneje la herramienta fisicoquímica necesaria y suficiente para que identifique y resuelva problemas que plantean los fenómenos naturales particularmente biológicos.

IV. Desarrollo por unidades

Nombre de la unidad

1.- Estados de agregación de la materia.

Objetivo que el alumno sea capas de.

Diferencias los estados de agregación de la materia y explicar estos con magnitudes y variables fisicoquímicas.

Aplicar la Teoría Cinética de los gases ideales en la resolución de problemas en ciencias naturales y sobre todo biológicas.

Analizar y explicar las propiededades de las soluciones acuosas, explicar y hacer cálculos de sus propiedades coligativas.

Contenido temático

- I.- Teoría Cinética de los gases
- I.1.-Ley de Boyle
- I.2.-Ley de Charles-Lussac
- I.3.-Ley Combinada
- I.4.-Numero de Avogadro
- I.5.-Ecuación General de los gases ideales
- I.6.-Leyes de Dalton y Amagat
- I.7.-Densidad y Peso Molecular de los gases
- I.8.-Solubilidad de los gases.
- II. Propiedades de las soluciones acuosas.
- II.1.-Diagrama de Fases del agua
- II.2.-Presión de vapor
- II.3.-Ecuación de Clapeyron

- II.4.-Ecuación de Clausius-Clapeyron
- II.5.-Propiedades Coligaticas de las soluciones

Duración 6 horas

IV. Desarrollo por unidades

Nombre de la unidad

2.- Conservación de la energía

Objetivo El alumno será capaz de:

Analizar y explicar fenómenos naturales sobre todo biológicos desde un punto de vista termodinámico realizando cálculos de magnitudes termodinámicas para explicar los cambios energéticos y su sentido.

Contenido temático

- 1.-Primera ley de la termodinámica
- I.1.-Calor, trabajo, energía interna
- I.2.-Procesos reversibles e irreversibles

3.-Equilibrio químico

Objetivo El alumno será capas de:

En base a la comprensión termodinámica de los fenómenos naturales explicar el equilibrio químico en aquellos que lo tengan y realizar cálculos para concluir su posición de equilibrio.

En problemas seleccionados explicar la influencia de la temperatura y el pH en el equilibrio.

Contenido temático

- I.-Energía libre de Gibas y equilibrio químico
- I.1.-Ley de acción de masas
- I.2.-Desplazamiento del equilibrio
- I.3.-Equilibrios químicos
- II.-Equilibrio iónico
- II.1.-Equilibrio en soluciones acidas y básicas
- II.2.-Energía libre y cálculos de pH
- II.3.-Soluciones tampón

Duración 5 horas

IV. Desarrollo por unidades

Nombre de la unidad	Objetivo El alumno será capaz de:
	Explicar el orden de una reacción, realizar cálculos para
4 Cinética de las reacciones químicas	definir reacciones de : orden cero, primero y segundo
	ordenes.
	Proponer mecanismos de reacción y explicar la influencia
	de la temperatura en la cinética de una reacción.
Contenido temático	
IOrden de reacción	
I.1Reacciones de orden cero	
I.2Reacciones de primer orden	
I.3Reacciones de segundo orden	
IIMecanismos de reacción	
II.1Reacciones simples, consecutivas y paralelas	
II.2Influencia de la temperatura	
	Duración 5 horas

IV. Desarrollo por unidades

Nombre de la unidad	Objetivo El alumno será capaz de :			
	Explicar los conceptos de catálisis y energía de activación.			
5Cinética enzimática	Determinar para reacciones bioquímicas en equilibrio su			
	Km y Vmax y explicar el papel de la enzima.			
Contenido temático				
IReacciones químicas				
I.1Determinación de la energía de activación				
I.2Determinación de las constantes de equilibrio Km				

- I.3.-Determinación de la velocidad de las reacciones enzimáticas
- I.4.-Proponer mecanismo de reacción

Duración 4 horas.

V. Metodología de trabajo

Primero de manera individual analizara un problema seleccionado por el profesor, después en grupos de 3 o 4 alumnos lo discutirán y en su casa resolverán para finalmente exponerlo al resto del grupo.

En ocasiones los trabajos serán diferentes para cada alumno compartiéndolos en grupos de 2 o 3 alumnos para su discusión y solución.

Se les pedirá que cada estudiante selecciones un evento o fenómeno natural y defina las variables fisicoquímicas involucradas y explique su comportamiento e interrelación.

VI. Criterios de evaluación

- 1.-Participación en las horas de taller mediante el análisis y solución de problemas (25%).
- 2.-Trabajo en clase (25%).
- 3.-Exámenes escritos individuales(50%).

VII. Bibliografía

Básica

- 1.-Morris , J. G ., Fisicoquímica para biólogos ,1a. Ed., Editorial Reverste, S.A., España.
- 2.-Jimenez, V. Macarulla, 1975, fisicoquímica fisiologia, 4ª. Ed., Editora Importecnica, España.
- 3.-Tinoco, I., Saber, K., Wrong, J., 1975, Fisicoquímica principios y aplicaciones a las ciencias biológicas, 1^a. Ed., Prentice Hall, México.
- 4.-Daniel, F., Alberty, R., 1975, Fisicoquímica, 4a. Ed., John Wiley, N.Y..

Complementaria

- 1.-Ficcini, J. Lumbroso, N., 1973, Termodinámica y equilibrio químico, 1^a. Ed., Ediciones Omega, Barcelona.
- 2.-Lehninger, A.L., 1975, bioquímica, 2^a.
- 3.-Lehninger, A.L., 1973, Bioenergetica 2a. Ed., Fondo educativo interamericano S.A., USA.
- 4.-Morwitz, H.J., 1978, Entropía para biólogos, una introducción a la termodinámica, 1ª., Ed., Héroes S.A., Madid.

Vo. Bo	FormulóM. C. Alejandro Martínez Ruíz FechaAgosto de 1998	